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A B S T R A C T  

From an inaccessible cardinal we construct a model of ZFC where the 
Borel Conjecture holds and all projective sets of reals are measurable. 
This continues the investigation of countable support iterations of Proper 
Souslin forcing notions, started in a paper of Judah and Shelah. 

I n t r o d u c t i o n  

It is well known that  all analyt ic  (E~)  sets of reals are Lebesgue measurable ,  

bu t  the axioms of ZFC do not  decide whether  more complex projective sets 

are Lebesgue measurable:  In  GSdel's construct ible  universe L there are already 

nonmeasurab le  A 1 sets. On the other hand,  in the celebrated model of Solovay 
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[15], all projective sets of reals are Lebesgue measurable, and satisfy many other 

regularity properties (have the Baire property, the l~amsey property, etc.). 

Writing PM for "all projective sets of reals are Lebesgue measurable", PB for 

"all projective sets of reals have the property of Baire", ~Xn(M ) for "all ~Xn-sets 

of reals are Lebesgue measurable", etc., and IC for "there exists an inaccessible 

cardinal", Solovay showed: 

If Con(ZFC+IC), then Con(ZFC+PM). 

Conversely, Shelah showed in [14]: 

If Con(ZFC+E~(M)), then Con(ZFC+IC). 

A set X of reals is said to be "of strong measure zero", if for every sequence 

(~k : k E w) of positive numbers there exists a sequence of reals (xk : k E w) with 

X C Uke~,(xk - £k, xk + ek). It is clear that every countable set is of strong 

measure zero, and every strong measure zero set has Lebesgue measure zero. 

While this second implication cannot be reversed (the Cantor set or indeed any set 

containing a perfect set is not of strong measure zero), the question whether the 

first implication can be improved to an equivalence turned out to be undecidable 

in ZFC. Let BC (Borel's Conjecture) stand for the statement 

Every strong measure zero set is countable. 

Then CH (the continuum hypothesis) implies -~BC, but Laver [10] constructed 

a model in which BC holds. 

In [6], Judah showed that under BC, Shelah's E~(M) can be replaced by A~(B): 

If Con(ZFC+BC+A~(B)), then Con(ZFC+IC). 

(The same is not true for A~(M), because Laver's construction, followed by R1 

many random reals, will yield a model satisfying BC (by [9]) and A~(M) (by [4])). 

For the other direction, Judah and Shelah showed in [5]: 

If Con(ZFC+IC), then Con(ZFC+BC+E~(M)). 

In section 4 we will get the following result as a corollary to the Main Theorem: 

0.1 THEOREM: 

If Con(ZFC+IC), then Con(ZFC+PM+BC) 

so that the following equiconsistencies hold: 

(1) Con(ZFC+PM+BC) ifl' Con(ZFC+PM+-~BC) i f f  Con(ZFC+IC). 

(2) Con(ZFC+--PM+BC) iff Con(ZFC+--PM+--BC) iff Con(ZFC). 
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The contents of sections 1--4 are as follows: In section 1 we discuss Souslin 

proper forcing notions, and we show how to get a version of Martin's axiom for 

these forcing notions. Judah and Shelah [5] called a forcing notion Q a "Souslin 

forcing" if its underlying set is a ~x subset of IR (the set of reals) and also < 

and 2_ relations are ~ .  Q is called "Souslin proper", if it is Souslin, proper, 

and moreover, for any countable model M satisfying some large fragment of ZFC 

(not necessarily an elementary submodel of some H(X)) and for every p E QM, 

there exist a condition q > p in Q forcing that G t3 M is QM-generic over M 

(where QM = Q N M is a Souslin forcing in M that uses the definitions of Q). 

Unfortunately, for many tree-like forcing notions the .l_-relation is not analytic. 

(We wish to thank Uri Abraham for pointing out this problem.) If we want to 

include also these forcing notions, we have to amend the definition of "Souslin 

forcing" to admit forcing notions in which only <_ is analytic, but which satisfy 

the strengthened properness condition (mentioned above) not only in V but also 

in every model of ZFC. 

In section 2 we deal with countable support iteration of Souslin proper forcing 

notions. We generalize the operation that sends a generic G C Q to G f ) M  C QM 

to apply to filters G~ C_ P~ on iterations of Souslin proper forcing notions, and 

we prove (essentially) that for every p E pM (the iteration, computed in M) 

there exists a q E P~ forcing that the "restriction" of G to M is generic and 

contains p. (For the technicalities, in particular what "restriction" and "essen- 

tially" mean, see section 2.) To ease the understanding of this proof, we first give 

a structurally similar (but technically simpler) proof of "properness is preserved 

under countable support iteration." 

The results of this section are similar to those in [5]. We give definitions that we 

think are more natural than the original definitions. (We rely less on definition by 

simultaneous induction, and more on the existential completeness lemma.) The 

proof of theorem 4.5 in [5] is incomplete, but a stronger version of the theorem 

it was supposed to prove is given in Theorem 0.1 of this paper. 

In section 3, we use the result of section 2 to show 

0.2 THEOREM: Let R~ = Coll(<~,Ro), the LEvy collapse of an inaccessible 

cardinal x. Le~ -P = (Pi, Qi : i < x +) be an R~-name for a countable support 

iteration of Souslin proper forcing of length ~+ = R va~ , P~+ = lim Pi. 

Then IkR~,p~+ "for every real x, there exists a forcing notion Q E V of size less 

than ~, and a V-generic H C Q such that x E V[H]." 
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Finally in section 4, we repeatedly apply this theorem to all reals in vR**P~ + 

(after collapsing ~+ to ~, so there will be only ~ many reals), to get 

0.3 COROLLARY: Assume that R~, P are as above, and let C be the forcing 
R,~,,P 

notion in VR'*P, + collapsing ,~+ (= R2) to ,~ (= R1) using countable v ~+ 

conditions. Then if  G C_ R~ * P~ * C is generic (letting V~+ = V[G N R~ * P~+], 

V~++l = V[G]) in V~++I there exists a V-generic H~ C_ R~ such that 

/RV[n "] = ~v.+ =/RV.++,. 

(This consequence of 0.2 is a special case of a more general theorem of [18], 

but we prove it anyway in section 3.) 

As a consequence, the first order theory of reals in V~+ is the same as the first 

order theory of the reals in V[H~], and in particular V~+ ~ PM.  

If we let our iteration ~ be an iteration of Mathias (or Laver) forcing, we get 

V,~+ ~ BC, and hence 0.1. 

If ~0 is a property of forcing notions, we write MA(~0) for the statement 

For all forcing notions Q satisfying ~0, for all collections, (Di : 

i < Wl) of RI many dense open sets of Q, there exists a filter 

G c_ Q such that, for all i < Wl, G N D i  # 0. 

Harrington and Shelah [2] proved that MA(ccc), together with any of PM, 

PB, E~(M), or A~(B), is equiconsistent with the existence of a weakly compact 

cardinal. Judah and Shelah [8] later lowered r.~(M) to A~(M), and they also 

showed that MA(Souslin ccc), together with any of PM, PB, El(M), or El(B), 

is equiconsistent with the existence of an inaccessible cardinal. 

In section 1, we give a reflection argument to show how to obtain MA(Souslin 

proper) by a countable support iteration of length R2. A bookkeeping argument 

(as in [16]) enables us to let the iterands Qi range over all Souslin proper forcing 

notions. 

As a consequence, we get in section 4 

0.4 COROLLARY: Assume Con(ZFC+IC). Then 

(ZFC + MA(Souslin Proper) + 2 ~° = R2 + PM) 

is consistent. 

0.5 Historical Remarks: It should be pointed out that ours is not the first model 

of PM+BC. By a result of Woodin [18], the mere existence of a supercompact 
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cardinal already implies PM. Since a supercompact cardinal cannot be destroyed 

by a small forcing such as Laver's iteration, 

(*) Con(ZFC+3 supercompact) implies Con(ZFC+PM+BC).  

Of course, in the above statement, "BC" can be replaced by any other statement 

that can be forced with a small forcing notion. Also, by a result of Martin and 

Steel [11], supercompact cardinals imply full projective determinacy (PD), so 

after forcing with Layer's iteration we could even get PD+BC. 

Similarly, the consistency of large cardinals easily implies the consistency of 

MA(Souslin proper)+PM, or even MA(proper)+PD. 

While (*) gives only a glimpse of the awesome power of large cardinal hypothe- 

ses, we believe that  to kill a fly, a fly-swatter is more appropriate than a nuclear 

warhead. The main point in this paper is 0.2 and its corollary 0.3: If we start 

from Solovay's model of PM, iteration of Souslin proper forcing notions does 

not change the first order theory of the reals. Thus the consistency strength of 

PM+BC can be shown to be exactly the same as that of PM, namely, it requires 

just one inaccessible cardinal. 

We conclude the introduction by setting up a notation and quoting a few well 

known facts: 

O.fiNotation: For a forcing P, Gp is (depending on the context) either = {(p,p) : 
p E P}, the canonical name for the generic object (also called the generic filter) 

added by P, or a variable ranging over all V-generic filters G C_ P. 

We interpret p < q as "q extends p", and we write q >* p if q ll-p p E Gp. 

0/, is always the weakest condition in the forcing P. 

We will consider a countable support iteration (P~, O,~ : a < e) of forcing no- 

tions, i.e. conditions in r E P~ are countable partial functions with domain a 

subset of a,  and for each ~ E dom(r), I~-pa r(B) E Qa, where, for all a,  Q,~ is a 

P,~-name of a forcing notion. 

For fl ¢ dora(r), we let r(Z) = 0q, .  

We may write Ga for Gp,,. 

When we talk about a countable support iteration (P~,Q,~ : a  < e), it is un- 

derstood that Pe is defined as the countable support limit of this iteration. 

Iff l  < a,  and (P,~,Qa : a < ¢) is an iteration, then G~ always denotes GaNP~. 
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When we fix a ground model V = V0, and consider an iteration (P~,, Q~, : a < ~) 

6 V0, we write V, for V[G,]. N o t e  t h a t  th is  conflicts  w i th  t h e  n o t a t i o n  

t h a t  s o m e  a u t h o r s  u s e  for t h e  s e t s  o f  rank  < a .  

For a P-name z and a generic G C_ P, we let £[G] be the evaluation of z by 

G. But if M is a model of a large fragment of ZFC, then we let 

M[G] := {~[G] : M ~ £ is a P-name}. 

m i n A U B  should be read as min(AUB). For a successor ordinal p, # -  1 denotes 

its predecessor. 

O. 7 Notation: We let ZFC* be a sufficiently large fragment of ZFC, excluding 

the power set axiom Vx3~(x),  but including the statement 

The set {w,~(w), ~ ( ~ ( w ) ) , . . .  } exists. 

We will consider countable transitive models (M, 6) satisfying ZFC*. 

The following four facts are well known: 

0.8 Fact and Notation: We consider an iteration (P~, Q~ : a < ~). If G~, c_ P~ 

is generic, and H C Q~[G,~] is any set, we let 

G~* H = {r 6 P~+I:  r r a  6 G~, r(a)[G~] 6 H}. 

Then: G~ * H is generic iff G~ is generic and H C_ Q.[G~] is generic over 

v [ a . ] .  

Conversely, writing G(a) for {q(a)[G.] : q 6 G.+1}, we know that it is a 

generic filter on Q~[G.] over the model V[G.], and G.+, = G~ * G(a). 

0.9 Fact: I f f l > a ,  q E P ~ , p E P ~ , q > _ * p l a ,  thenq+ : = q U p I [ a ,  fl) i s inPf l ,  

and q+ >_* p. 

0.10 "EXISTENTIAL COMPLETENESS LEMMA" : For any forcing P, and any con- 

dition p E P, any formula T(x): 

p IF 3x ~(x) iff there is a name • such that p IF ~(5)" 

0.11 Fact: Assume that A is a limit ordinal. Then for a generic G;~ C_ Px, for all 

p E  Px, 

p6G~ ¢~ Va<Ap[a6G~. 
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0.12 Note: If the reader is only interested in Theorem 0.1, and not in 0.4 and the 

general theory of Souslin proper forcing, he/she can use the following dictionary 

to simplify the paper: 

d codes Q Q = Laver forcing 

Qd, Qd,,, Qc~ Laver forcing (in V/'~ ) 

Pc,, P£rc,, etc. a countable support iteration of Laver forcing of length a 

d~, c~, ea 0 (actually, a P~-name for 0) 

etc. a sequence of  (or etc.)  m a n y  zeroes 

After having replaced all phrases by their counterparts in the above dictionary, 

the reader should not be surprised if some lemmata or some cases within proofs 

become vacuously true. For example, "da[Ga] = cas [G~] codes a Souslin proper 

forcing notion" (in 2.8) reduces to "0=0, and Laver forcing is Souslin proper", 

which is just true. Also, dand  ~'will automatically be "corresponding" sequences 

(see 2.12). 

However, the proofs in the "interesting" cases (see 2.11 and 2.18) stay of es- 

sentially the same complexity. 

1. Souslin Proper Forcing 

1.1 Notation: Using a universal ~]-set, we can associate with each real d two 

~ relations <d and "±d (subsets of ~t x IR) such that every analytic pair <, ± 

appears as some <d, ±d, and the relations z <d Y and x -I-d y are El. 

1.2 Definition: We say that "d codes a strongly Souslin forcing" iff 

(1) Qd := (field(<2), <a) is a partial quasiorder. (We also write Qd for the 

underlying set field(<d).) 

(2) For all z , y  E Qd: z -l_a y ¢* -',3z • Qd : z <_d z & y  <--d z. 

1.3 Definition: We say that "d codes a Souslin forcing" iff 

Qd := (field(<d), <d) is a partial quasiorder. 

(Here we disregard the relation ±d.) 

1.4 Remark: Clearly these are H~ conditions on d. 

1.5 Definition: Assume that d codes a Souslin forcing Qd, and M is a model of 

ZFC* that contains d. 

(1) We let QM be the Souslin forcing coded by d in M. 
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(2) If p E QM, q E Qd, we say that q is (p, M)-generic, iff 

Isr. J. Math. 

q IF-Qd "God [3 M is QM-generic over M and contains p." 

(3) We say that "Qd is a strongly Souslin proper forcing" or "d codes a strongly 

Souslin proper forcing" if d codes a strongly Souslin forcing, and 

for all countable M as above, every p E Q~t there exists 
(*) 

a (p, M)-generic q E Qa 

(4) We say that "Qd is a Souslin proper forcing" or "d codes a Souslin proper 

forcing" if: 

(a) Either d codes a strongly Souslin proper forcing, (so in particular, 

i~=l(Qd,_<d)), 

(b) or d codes a Souslin forcing and there is a proof in ZFC* that  (*) 

holds. 

1.6 Remark: Since we consider arbitrary models of ZFC* rather than only 

elementary submodels of some large initial segment of V, the statement "Q is 

a strongly Souslin proper forcing" is (apparently) stronger than "Q is a Souslin 

forcing and Q is proper". (We do not know if these two notions are in fact 

equivalent.) 

1.7 Remark: (1) "d codes a Souslin proper forcing" is a II~ statement about d. 

Hence (by Shoenfield's absoluteness theorem) if it holds in V, it holds in every 

submodel that contains all countable ordinals. 

(2) If (M, E) is a transitive model of a sufficiently large part of ZFC (M 

may be a class), and M ~"X := ] U{w,~3(w),~(~(w)), --- }l and X + exist," and 

M0 := H(X+) M is countable, then Mo is a countable model of ZFC*, and q is 

(p, M)-generic iff q is (p, M0)-generic. So for all practical purposes we can pretend 

that M is countable. (In particular this is true if wl is a strongly inaccessible 

cardinal in M.) 

Proof of (1): Every countable model M is isomorphic to some well-founded 

(w, R). If z E IR M, we also write x for its image under this isomorphism. 

It is enough to show that "d codes a strongly Souslin proper forcing notion" 

is a II~ statement. 

d codes a strongly Souslin proper forcing iff for all R C w × 
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Either  (w, R) is not well-founded (i.e., there exists an R-descending se- 

quence),  

or (w, R) ~ ZFC* (this is A]) ,  

or d ~t (~,, R )  

or for all p E QM there is q E Qd such that  for all r > q 

(i) for all D such that  (w, R) ~ "D is open dense in Qd", there  is an i, 

(w,R) ~ i E D, r ,I_ i, 

(ii) r , t  p. 

((i) implies tha t  q II- G N D # 0, and (ii) implies tha t  q It- p E G.) ! 

Proof of (2): M and M0 contain the sasne dense sets of Qd. I 

1.8 Example: Mathias forcing is (strongly) Souslin proper.  

Proof: see [5]. I 

1.9 Example: Laver forcing is Souslin proper.  

We will prove this after collecting a few facts and definitions about  Laver 

forcing. 

1.10 Definition: Recall that  for p C_ w <'~, r /E p, we let 

Succp(r/) = {~ e p :  r / c  ~, I~1 = Ir/I ~- 1} 

and 

p['] = {v E p :  v C_ r/Vr/C_ u}. 

The  following definition is from [10]. 

1.11 Definition: Laver forcing IL is the set of all trees p C_ w <'~, such that  for 

some T/0 E p, p = p[,10] and for all u E p with v 2 r/0, Succp(v) is infinite. We call 

this r/0 the s tem of p, 710 = stem(p)).  

p < q (or q extends p) i f fp  2 q- 

p <,, q (or  q n-extends p) iff p < q and p n w -<" = q n w < ' .  

For p < q we say that  q is a pure extension of p iff s tem(p) = stem(q).  

We let IL,, = {p ~ IL : Istem(p)l ___ n}. This is a dense open subset of 1L. 

1.12 Definition: For p E]L,  

(1) b C_ p is a branch, if b is a maximal  linearly C-ordered set (iff for some 

f : a;---~ w, b =  { f l n : n  Ew}) .  

(2) A C_ p is an antichain iff for all 7 /#  v in A, ~ ~ t, and t, ~ 7]. 
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(3) F C_ p is a front, if F is an antichain and every branch of p meets F.  

(4) F C_ p is a front above n iff F is a front and Vr/E F [7/[ >_ n. 

1.13 Fact: Assume that F C_ p E ]L is a front above n, n > [stem(p)[, and for 

all 77 E F ,  q¢ is a pure extension o f p  [~1 (so stem(q¢) = T/). 

Then q := U q~ is a condition, p _<,, q and q[~] = q¢. 
TeE 

For D C ]L, p E If., we say p E* D if there is a pure extension of 1.14 Notation: 

p that is in D. 

1.15 LEMMA: A s s u m e  p E L, [stem(p)[ < n, D is dense open, D C_ ]L,,. Then  

there exists a condition q = q(p, n, D)  >_, p and a front F = F(p,  n, D)  C_ q such 

that for all r 1 E F ,  q[~] E D. (Since q N w <-" = p N w <n is int]nite, we mus t  have 

stem(p) = stem(q).) 

Proof: Consider the following game G(n,p ,  D): the game lasts w many moves. 

In the k-th move, player I plays T/k E 4 ,  and player II answers with a set 

Ak C k+lw. They must obey the following rules: 

(1) For k > 1, player I must play 7/k E Ak-1. (Since y0 E °w, we must have 

oo = 0 . )  

(2) For k < n, player II must play Ak = Suc%(r/k). 

(3) For k > n, player II must play an infinite set Ak C_ Suc%(T/k). (We can 

even require Suc%(r/k) -- Ak finite.) 

Player II wins if for some k, p[,k] e* D. 

We claim that player I cannot have a winning strategy. For assume that a 

is a winning strategy for I. Let 

15 := {77 : r / appears in a play in which a was used}. 

Then 13 is a condition (this follows easily from (3)), p <n 15, and for all 7/ E i5, 

p['~] ~* D. This contradicts the fact that D is dense. 

Since the game is closed, it is determined, so player II must have a winning 

strategy a. Again, let 

i6 := {7/: 7/appears in a play in which a was used} 

and let 

F := {~/E 15 : 15["] E* D & Vv C 7/15[~] ~* D}. 
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Then F is an antichain, and since every branch through/5 corresponds to a play 

in which II wins, F is a front. Since D C_ ]L,, F is above n. 

For each z/E F let q~ E D be a pure extension of p-[~], and let q = U~eF q~ 

as in 1.13. Then p <,, q, and for all T/E F,  q[~l = q~ E D. I 

1.16 Proof of 1.9: It is clear that Laver forcing is Souslin (though not necessarily 

strongly Souslin). We will give a proof (in ZFC*) that Laver forcing always 

satisfies the properness condition (*) in 1.5(3). 

Let M be a countable model. Let (D,, : n E w) be a sequence of sets D ,  C_ 

IL,, such that for all n, M ~"D, ,  is open dense", and for every set D E M such 

that M ~ " D  is open dense", there is an n such that M ~ D,, = D n IL,,. 

Fix a condition p E ILAM, [stem(p)[+ 1 = k0. We will define two sequences 

(p,, : k0 < n < w) and (F ,  : k0 + 1 < n < w) such that Pk0 = P, for all n, p,, <,, 

P,+l  E M, F ,+I  is a front above n in P ,+l ,  and for all r /E F,,+I, _N] P,+l  E Dn. 

Given p , ,  we let p,,+l and F,,+I be obtained from p ,  as in 1.15. 

Clearly q := N,~ P,, is a condition in IL, extending all conditions p,,. 

Let G C_ lL be generic, q E G, then we claim p E G (this is clear) and G is 

generic over M, i.e., G meets every D that is a dense subset of ]L in M. For this 

it is enough to meet every D , .  

Fix n. G defines a branch g through q: 

r} E g ¢* qN] E G. 

g is also a branch through P ,+l ,  so by 1.15, g meets F ,+I .  (Being a front is 

a II]-property, hence F ,+I  is still a front in V[G].) Let 7/ E Fa+~ n g. Then 
pNI 

n + l  E Dn N G. 

This finishes the proof that Laver forcing is Souslin proper. I 

We conclude this section by showing how to obtain the consistency of Mar- 

tin's Axiom for Souslin proper forcing notions with the negation of CH. In our 

model the size of the continuum will be R2. 

In this context, we should mention the following question: 

1.17 Problem: Is MA(Souslin proper+2 ~° > R2) consistent? 

1.18 THEOREM: Assume CH and 2 ~' = R2. Then there is a countable support 

iteration (P~,, Q~ : a  < w2) of length R2 of Souslin proper forcing notions Q~ such 

that 

P ~  I1-'~MA(Souslin proper) + 2 ~° = R2 ". 
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I. 19 Definition: 

:= < cf( ) = 0:, }. 

s o : =  < 0:2: cl( ) = 0:0}. 

S O and S~ are stationary. 

We will use the following well known result of Solovay [17]: 

1.20 LEMMA: There exists a sequence of R2 many disjoint stationary subsets 

o r s  1. 

1.21 Notation: We will use a sequence (S-/: 7 < 0:2) as in 1.20. Also, we fix a 

bijeetion F : 0:u x 0:1 -o co2. Wlog we may assume that all elements of Sr(/~,0 are 

1.22 Fact: (Assume 2 a° = R1 and 2 ~' = R2.) If (P~, Q~ : a < ~) is a countable 

support iteration of Souslin proper forcing notions of length ~ < 0:2, then 

(1) Pe satisfies the R2-cc and Pe IF CH. 

(2) If S C R2 is stationary, then Ib~"S is stationary". 

Proo:: (1) is welt known from [13] (and true even if the Q~ are just proper and 

of size _< R1). (2) is a well known consequence of (1). | 

1.23 Definition: We define a countable support iteration (P~, Q~ : a < 0:2) of 

Souslin proper forcing notions Q~ as follows: 

In V P" , we enumerate IR = {r~ : i < 0:1 }. 

Assume that a E S 7, 7 = F(fl, i) (so fl < a),  and ri ~ codes a Souslin proper 

forcing, then Qa = Qr~" 

If a ~ S-~ for all 7, or v~ does not define a Souslin proper forcing, then let 

Q~ be some fixed Souslin proper forcing notion adding a real, say Cohen forcing. 

(We could even let Q~ = {~} in this case.) 

(I.e. we let Qa be a Pa-name such that the previous two paragraphs are 

forced about Q,~.) 

Clearly (Pa, Qa : a < 0:2) is a countable support iteration of Souslin proper 

forcing notions. 

We claim that Ib~ 2"MA(Souslin proper)".  Since we add reals in cofinally 

many stages, [}- 2 ~° = R2. 

1.24 LEMMA: Assume (P~,Q~ : a < w2} is the iteration from 1.23, G., 2 c Pw2 

is generic, d codes a Souslin proper  forcing Qd in V[Gw2] , A a maxima/ant ichain 
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in Q, say A = {ai : i < w2} , where ai = ai[Gw2]. Wlog each a i  is a Pc,-name for 

some a < w2. For a < w2, let Vc, = V[G~,], A a = {ai : i < a}.  

Then in Vw2, there exists a dosed unbounded set CA C w2 such that for ali 

ot E C A M S~, Ac~ E Va and 

V,~ ~ A ~ is a maxima/ant icha in  of Qa. 

Proof: For some a we have d E V~,. For notational simplicity only, assume that  

d is in the ground model V0. 

In V,,2, define a function f : w2 ~ w2 by f ( a )  = some/3 such that  

(1) Vi < a:  ai is a P#-name. 

(2) If there is a E Va such that  A ~ 13 {a} is an antichaJn, then there is j < fl 

such that a is compatible with aj. 

Clearly it is possible to define such a function f .  Note that  the compatibili ty 

relation is analytic and hence absolute. 

Now let CA := {6 < w2 : ~/a < /~ : f ( a )  < 6}. Clearly CA is closed 

unbounded. 

We claim that  for all 6 E CA, A 6 is in V~. To prove this, note that  A 8 = 

{ a i : i  < 6} = {ai[G~]:i  < 6}, and { a i  : i < 6} E V0. 

It remains to prove that for 6 E CA n S~, 

V6 ~ A ~ is a maximal  antichain of Qd. 

Assume that  this is not true for some 6, so there exists an a E V6 which is 

incompatible with all ai, i < 6. Since c f(6)  > w, a E V,, for some a < 6. By 

definition of the function f there exists a j < f ( a )  such that  a is compatible with 

aj.  But j < f ( a )  < ~, a contradiction to the choice of a. I 

1.25 Proof of 1.18: Consider a Souslin proper forcing Qa in V~2, d E V[G~], and 

a set {At, : k < wl} of R1 many maximal antichains of Qa- Let CA, be defined 

as in 1.24, and let C := N k < ~  CA,. Then C is a closed unbounded set. 

d, the real that  codes the Souslin forcing, appears in some intermediate 

stage VZ, say d = r/~[Gz]. Let 7 = F(/3, i). Then by 1.22, S- t is still s ta t ionary in 

V,,,, so there exists a E S-y fq C. By 1.7, V,, ~ " d  codes a Souslin proper forcing." 

So by defitfition of the iteration, Q~[G~] = Qv~. Since a E $21, by 1.24, A~' is a 

maxima] antichain in Qd v~ , so each Ak is met  by G(a), the generic subset of Q~. 

l 
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2.  I t e r a t i o n  o f  S o u s l i n  P r o p e r  F o r c i n g  

To prove the main theorem (2.16) of this section, we will need the following 

lemma: 

2.1 PRELIMINARY LEMMA: Assume al ~_ ~2 ~- ~, Pl is a P~-name for a condi- 

tion in P~. Let D be a dense open set of Pc. 

Then 0 Ib,~2 "there exists a p2 6 Pe satisfying (1)-(3)": 

(1) p~ >_ £a. 
(2) v2 ~ D. 

(3) If p1~a~ 6 Ga~, then p~a2 6 G~ 2. 

(By 0.10 there is an a2-name p2 for a condition in Pe such that (1)-(3) are 

forced about P2.) 

Remark: The P~,-name Pl  corresponds naturally to a P~2-name, which we also 

call P l .  In other words, we may wlog assume that oq = a2. 

Note that this lemma does not mention properness. It is in fact true for 

any iteration, since it is really only concerned with the composition of the two 

forcing notions P~,2 and Pa/Pa~. 

Proof of the/emma: Assume that the conclusion is false. So there exists a 

condition r2 6 P ~  such that 

r2 Ik there is no P2 satisfying (1)-(3). 

We may assume that r2 decides what p l  is (i.e. r2 It-"pl = pl" ,  for some 

pl 6 V), and r2 also decides whether Pl ro~2 6 G~2. 

CASE 1: r2 Ib Pl ra2 ~ G,~2: But then (3) is true for any P2, so 

r2 IF-~, there is no p2 satisfying (1)-(2), 

which is a contradiction since D is dense open. 

CASE 2: r2 I~- Pl Ia2 6 G ~ ,  i.e. r2 >* p, ~a2. Let (by 0.9) r = r2 Up, [[a~, ~) >* 

pl, and find P2 6 D, P2 > r. Then 

P2 [a2 I~- P2 satisfies (1)-(3), 

again a contradiction, because p2 Ia2 > r2. 

To show the significance of this lemma, and also to prepare the reader for 

the proof in 2.16, we first use this lemma to give a simple proof of the key step in 

Shelah's well-known theorem: "properness is preserved under countable support  

iteration." 
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2.2 INDUCTION LEMMA: Let (P~,Q~ : a < e) be a countable support iteration 

of proper forcing notions, N < H(X ) a countable e/ementary submodel of H(X) 

for some large X, (P~, Q~ : ot < e) 6 N. 

For all fl 6 N f] e, all a 6 N n fl, all p E N: Assume p is a P~-name for 

a condition in P#, and 

(a) q E Va, 

(b) q is (P,, N)-generic. 
(c) q l b , ~ p r a E G a N N .  

T h e n  there is a condition q+ : 

(a) + q+ 6 Pa, q+ra = q, 

(b) + q+ is N-generic, 

(c)+ q+ p n N. 

(For a = 0 this shows that properness is preserved in limit stages of count- 

able eofinality.) 

The proof is by induction on/3. 

We omit the (easy) successor step, so we only consider the case where/3 6 N 

is a limit ordinal. Let 13' := sup(/3 N N) = U,, a , ,  a = o~0 < aa < - . . ,  a ,  6 N. 

Let (D,  : n 6 w) enumerate all dense open subsets of P# that are in N. 

First we will define a sequence ( p ,  : n 6 w), pn  6 N such that in N the 

following will hold: 

(0) p ,  is a P~.-name for a condition in P~, 

(1) [[-".+* £n+1 ~* £n,  

(2) ]~-otn+ , £n+l  6 D . ,  

(3) IF,~.+ 1 "If p .  ra,,+l 6 G~,.+I then p,,+l ro~,,+, 6 G,,.+I". 

For each n we thus get a name p .  that is in N. For each n we can use the 

"preliminary lemma" 2.1 in N to obtain P,,+I. 

Now we define a sequence (q . :  n 6 w), q. E P . . ,  and q. satisfies (a), (b), 

(c) (if we write q. for q, Pn for p, a,, for a). 

q.+l = q+ can be obtained by the induction hypothesis, applied to an, 

a . + l ,  and p .  r a .+ l .  By (c) + we know 

q+ Ib (pn[G~.])lan+ 1 6 G~.+ x fq N. 

Hence by (3) and the genericity of qn+l we have 

q.+l Go.+, nN.  
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Since q,+l In,, = qn, q = limq,, exists and is > qn for all n. 

We have to show that q II- p 6 G 0 N N and that q is generic. Let G 0 be 

a generic filter containing q. We will write p,, for p,,[G~.].  (Note that p,, E N, 

because qn was N-generic and q,, E G~. . )  

Since q,, E G 0, we have p,, [an E G~. f3 N and N ~ p,, >_* p,,-I >* "'" >_* 

P0. Hence pin,, E G,~. N N for all n, and so by 0.11, p E G 0, N N = G o N N. 

Similarly, p,, E G o for all n. 

Consider a dense set D,, _C Pp. Since q,,+l IF pn+l  E D,,, we have p,,+l E 

G o N D,, CI N. Hence q is generic. 

2.3 Context: In this whole section, e will be an ordinal < w2. S will be a count- 

able subset of w2 that is closed under immediate successors and predecessors, 

where the order type of S is in M. a and 7 will stand for ordinals < e in S. M 

will be a countable transitive model of ZFC* (0.7) or an "essentially countable" 

transitive model as in 1.7(2). 

For c~ E S, let a s be the order type of tr f3 S. 

d will be a sequence of length ~, and fi' will be a sequence of length ¢s, 

~ 'EM.  

2.4 Det~nition: Given a sequence d = (d,~ : a < e) we can define a countable 

support iteration (Pa,Q~ : a  < e), by letting Q~ be a P~-name of Qd~Iaol (if 

this is Souslin proper), i.e. P~ forces the following: 

If d~[G~,] is a code for a Souslin proper forcing, then Q~ = Qd~ 

otherwise Q~, = {0} is the trivial forcing. 

2.5 Notation and Remark: We write Q~ for the iteration defined above, and we 

write Pd'I~ for P~, i.e., PdI~ is the a- th  iteration stage obtained from the definition 

and Q~ = Qa~ describes the successor extension. If d E M ~ ZFC*, then 

P ¥  is the a- th  iteration stage, computed from the definition d i n  the model M. 

(So any sequence (d~ : a < ¢) defines a Souslin iteration, but in different 

models these iterations may look different.) 

We will consider sequences d a n d  ~', where [~ = e and ]c-] = ~s, ~'E M. 

2.6 Det~nition: Assume M, fi', ~ S, e are as in 2.3. 

By induction on a E S N e, we will define a P~-name G~ [(S, M, ~a  s, din) 

(which we usually abbreviate to G~ or Go I(S, M)),  by requiring that 0po force 

the following: 
M a" c and 
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• I f a  = f l +  1, and 

(a) G~ is (Pff/,M)-generic, 

(b) d z [ a z ]  = c~,[C'~], 

(c) d~[G~] codes a Souslin Proper forcing (in V[G~]); 

then G" = G~* (G(/~)Iq M[G~]) 

If a = fl + 1 and (a)-(c) does not hold, then G" = 1~. 

• If a is a linfit, then for p E Pffl~,s we let 

We also let 

t , .  = t , . ( G . , S , M , ~ , d )  := min({fi _< ,~: G} not generic} U {a + 1}). 

Note that the computation of p~, is absolute for any universe __D V[G,~]. 

2. 7 Remarks raid Notation: 

(1) Whenever the parameters M, S, fi', tt are clear from the context we will 

write G" for G,, [(S, M, gra s, dra), sinfilarly for p , .  

(2) If G,~ is a Pdf, -generic filter, then we also write G~ for the evaluation of 

the name G~ by Ga, similarly for itc,. 

(3) Let M,, = M[G']. 
(4) It nfight seem more natural to write Go, I'(S, M)  as G' (= (G')as) instead ots 

of G~ = (G~)', but this would only complicate the notation. 

(5) "G" is generic" means of course "generic for the forcing P ~ s  over the 

model M". 

2.8 Fact: I f a  < e, G" # 0, then for a l l ~  < a,  G~ is generic and d~[G~] = 

c~s [G~] codes a Souslin proper forcing. (Whenever we write dz[G~] = c~s [G~] 

codes a Souslin proper forcing, this is to be interpreted in V[Gz].) 

Proof: By definition. | 

2.9 Fact: Let (in VIGil) 

p = pt = min({a < e :  G" not generic} U {e + 1}). 

Then i f u + l < # ,  

(a) G" is generic. 
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(b) d,,[a,,] = c~s [C'~] codes a Souslin proper forcing. 

Proof." (a) is by the definition of/~. For (b), note that if d.[G.] # c.s [G~], or 

dv[Gv] does not code a Souslin proper forcing, then Gv+l = 0, so it cannot be 

generic, contradicting the definition of #. 

2.10 Definition: Assume M, 8", ~ S, e are as in 2.3, 3' E S. Assume that M ~ " p  

is a Pe~./s-name of a condition in pM,,. q • Pa" is called (p,  7)-generic, or more 

exactly (p, 7, M, S, ~, m-generic iff it forces: 

(A)  /~ :=/~. := min({a <_ e :  a • S, G" is not generic} u {~ + 1})  is a successor 

ordinal. 

(B) If p < e, then d~,-l[G~,-1] ~ %_ls[G~_l], or V[G~,-1] ~ dl,-l[Gt,-1] does 

not code a Souslin proper forcing. (For v < p -  1, d~[G~] = %s [G'] always 

codes a Souslin proper forcing, by 2.9(b).) 

(C) If p > 7, then p[a l r(g - 1 )  • 

2.11 Remark and Notation: Usually M, S, ~', dare  clear from the context, so we 

can abbreviate (p,  7, M, S, F, d-)-generic to (p, 7)-generic. (We do not abbreviate 

it to p-generic, because the value of 7 may be important, see (C).) 

In applications we usually try to get Pe = e + 1. In the proofs below this 

will be called the "interesting" case, since proofs where Pe _< z are often trivial. 

2.12 Det]nition: We call d a n d  ~' "corresponding" sequences if for all a < ¢, 

IJ-~ If a'~ is generic over M, then c~s [ a ' ]  = d~[a,] 

and 

2.13 Remark: 
it forces: 

I~-~ do[Go] codes a proper Souslin forcing. 

If F and da re  corresponding sequences, then q is (p,'),)-generic if 

(AB)' Gle is generic over M. 

(c) '  e a ' .  
The assmnption that ~" and da re  corresponding sequences would formally 

simplify the proof of 2.16, but it is not clear if this is sufficient for 3.1. How- 

ever, those interested only in iteration of Laver forcing (0.12) may take 2.13 as 

definition of "(p -),)-generic". 



Vol. 78, 1992 SOUSLIN FORCING 353 

2.14 Fact: Assume that G~ is generic, a < e, p = p~ _< a + 1, and G~ contains 

a (p  ra, 7)-generic condition. (a, 7, e e S.) 

Then 2.10(A) and (C) hold in VIGil, and if moreover p,  < a ,  then also 

(B) holds. 

Proof: In V[G~], w e  can compute p,~ = min({fl _< a :  a~  is not generic} U {a + 

1}), and it will evaluate to p. Since (A) and (C) depend only on Gs-1, they hold 

in V[G~] iff they hold in V[G~,_I] iff they hold in V[G~]. Similarly, if #~ < a,  

then (B) v[G'] is equivalent to (B) v[a~]. | 

2.15 Fact: If q is (p, a, . . .)-generic, where in M p is a Perks-name of a condition 

in Pc', then qla is (pla, a,. . .)-generic. 

2.16 THEOREM: Let ~ ~, S, M, 7, ~ be as in 2.3. Assume that M ~ "p  is a 

Perks-name for a condition in Pc" (so p r7 is the name for its restriction to 7, 

and there is a canonical P~-name which we also call p ). 

Assume that q E P £Ix is ( p I7, 7, M, S, ~ 7  s, dIT )-generic. Then there exists 

a condition q+ E P£ such that q+ I7 = q and q+ is (p, q, M, S, ~, d)-generic. 

When we apply this theorem, we will only use it for closely related defini- 

tions 8' and 

2.17 COROLLARY: Assume M ~ p E Pc. Then there exists a (p,O)-generic 
condition q E pd. 

2.18 Proof o£ 2.16: The proof is by induction on e. 

SUCCESSOR STEP: Here is the only place where we explicitly use Souslin proper- 

ness: let e -- a q- 1. 

Using the induction hypothesis on a; we get a (p  [a, 7)-generic condition 

q+ ra E P~. To find q+(a), we will work in V[G~], where G~ is an arbitrary 

generic filter containing q+ Is. 

First, let us assume 

(a) G~ C_ P¢i~s is generic over M, 

(h) d := co [O'] = 

(c) Y[O.] d codes a Sousl in proper forcing. 

Then p(a)[G~] is in the Sousnn proper forcing Qd, so by definition there 

exists a condition q+(a) which is (p(a)[G~], M~)-generic. 

If (a)-(c) does not hold, then we let q+(a) = 0q, .  
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In any ease, we have 

(*) q+(c~) E Qa, and if (a)-(c), then q+(t~) is (p(a)[G~], M~)-generic. 

Coming back to V, we use the existential completeness lemma to get a 

name (which we also call q+(t~)) about which (*) is forced by q+ [~. 

Now we have to check that this construction ensures that q+ is generic. 

Assume that G~+1 is generic and contains q+. Let 

# = tt~,+l = min({/3 < a + 1: G~ is not generic} U {a + 2}). 

If # < o~, then (since G~ contains qra) the induction hypothesis and 2.14 imply 

that 2.10(A)-(C) hold in V[G~+ll. 

If/~ = a + 1, then again by 2.14, 2.10(A) and (C) are true. Assume that  

2.10(]3) does not hold, then d~[G,~] = c,~s [G'] codes a Souslin proper forcing. 

By (*), q+(a)[G~] is generic, so G(a) N Me, is generic over M~, so by 0.8 we get 

that G' is generic, contradicting the definition of it. ot+l 

If/~ = a + 2 (the "interesting case"), then 2.10(A) is true and (B) is 

vacuously true. Let p = p[G~]. Then pro~ E G" (because q+ ra was generic) and 

p(a) E G(a), so by definition (see 2.6), p[(a + 1) E G2+ 1. (d,~[G~] = c¢,s[G'] 
codes a Souslin proper forcing, by 2.9(b).) 

This concludes the inductive construction for e = a + 1. 

LIMIT STEP: Let (o~,, : n < w) be a cofinal sequence in e N S, a0 = 7. Let 

(D,  : n E w) enumerate all dense open subsets of P f f  that are in M. 

First we will define a sequence ( p , :  n E co), p ,  E M, P0 = P, such that 

in M the following will hold: 

(0) p ,  is a Pet ,s-name for a condition in Pc, 

(1) I%s+, p . + l  >_ p . ,  
(2) It-,~s+, p . + ,  E D. ,  

~ [a ,+  1 6 G~s+l. (3) IF~s+l If p , , [as+l  E G~s+~ then p , + ,  s 

(Here, of course, G~ stands for the canonical name (in M) for the generic 

object of P ~ ,  and It-, is the forcing relation of P~I~ in M.) 

For each n we thus get a name p ,  that is in M. We use 2.1 and 0.10 (in 

M) to obtain p , + l .  

Now we define a sequence (q, : n E ¢0), q, E P~.,  q0 = q, such that for all 

/2; 

(a)  qn E P a . ,  n > l =g. qn[o~n_a = qn_ l .  
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(b) q,, is (p,,  r a .  s, a.S)-generic. 

(e) For all k < n, q,, is (pk [as,  aS)-generic. 

q,,+l = q+ can be obtained by the induction hypothesis, applied to a .  s, 
s and s a . + l ,  p.[a.+ I. By induction hypothesis, q.+l is (p.[as-.,aS~-generic ke~ 71"I-1 nJ  

We have to show: 

(b +) q,+,  is (P,,+t [as+l ,  as+,)-generie. 

(e +) For all k < n + 1, q,+l is (pk [as+, ,  akS)-generie. 

Proof'. Let G~.+, be generic containing q,+, ,  and let 

I # = #~.+, = min({• < a , + l  : G ,  is not generic} U { a n +  i "~ 1}).  

I a n + l ,  2.10(A)-(B) will always be satisfied, because q,+l is ( p ,  s anS)_generic. 

G' CASE 1 (THE INTERESTING CASE): # = a,,+l + 1. We let Pk := Pk[ ~k] for 

k < n + 1. We have to check that s , _ PkIa.+1 6 G~.+~. 
S t Pn In,+1 6 G,,.+,, because the ( p ,  Inns+l, aff)-generic condition qn+l is in 

e~.+ 1 • 

Since G" k is generic over M, the definition of the pk's (see 2.1(1)) implies 

that for k _< n, 

S aS t aS t 
pkra.+, < ... < p.I .+, 6 G~.+~, sopkr .+, 6 G~.+~. 

For k n + 1, by 2.1(3) we have s , = P-+I ra,,+a 6 G~,.+~. 

G' CASE 2: Assume a ,  < # < a , + l .  Again we let pk := pk[ ,,~] for k _< n. The 
s s G' same proof as in case (1) works to show that Pk I n n +  1 _< " ' "  __<~ Pn [a,~+l 6 c,.+1" 

(By 2.10(C), there is nothing to prove about Pn+l.)  

CASE 3: /z < an. Then also p,~. = #, so we can use the inductive assumptions 

(c) on q,, together with 2.14, to show that 2.10(C) is satisfied. 

This concludes the construction of the q,'s. Finally, let q = limn q,~. We 

will have finished the proof of 2.16 once we show that q is (p,  7)-generic. 

Let q 6 G~. 

CASE 1: # ~ = ~ + 1 .  L e t p 0 = P 0 [ G ' 0 ] .  

Then for all n, #,,.  = a,, + 1. Since qn 6 Ga . ,  by assumption on the q, 's  

we know that p0 [a s 6 G~.,  hence P0 6 G' ,  by Definition 2.6. 
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CASE 2: p = e. The whole point of the construction was to ensure that  this 

cannot happen: Since G~ is not generic, for some n, G~ f3 Dn f3 M = 0. But by 
! 

construction of P, ,+I and since Gan+t is generic, we know that  for all k _> n + 1, 

P,,+I < Pk (by 2.1(1)). Since p ,  ra s E G ' , ,  we also have p,,+l [a s E G~, ,  and 

hence p,,+l E G~. Hence P,,+I E G '  f3 D,, N M. 

CASE 3: For some n, p < a=. Since G , .  contains the ( p  [a,)-generic condition 

q, ,  we are done by 2.14. II 

3. A p p l i c a t i o n :  I t e r a t i o n  o f  P r o p e r  Sous l in  Forc ing  in So lovay's  M o d e l  

In this section we will prove the following 

3.1 THEOREM: Let ~ be an inaccessible in V, 2 2~ = ~++, R~ = Coll(<~,R0) the 

LEvy collapse. Let ~ = (P/, Q / :  i < ~+) be a R~-narne for a countable support 

iteration of Souslin proper forcing of length g+ = R 2 va~ , P~+ = lira P/. 

Then for every V-generic filter H~ C_ R~, for every V[H~]-generic filter 

G~+ c_ P~+ [H~], for every reM x 6 V[H~ * G~+], there exists a forcing notion 

Q E V of size less than ~, and a V-generic H C_ Q in V[H~ * G~+] such that 

V[H]. 

3.2 Notation: For the proof of 3.1, we will work in We let = 

R~ = Coll(<~, R0), and for A _< t~ we let Rx = CoU(<A, R0) ,~ R~. 

Hx = H~ n Rx, Vx = V[Hx]. Note that  for all X < n, Vx is a class in V~, 

but Vx is an "essentially countable" model as in 1.7(2), so the results of section 

2 apply. 

Idea of the proof: We will find a sufficiently large A < ~ and a countable support  

iteration of Souslin proper forcing notions in Vx (of length < w vx < n), which 

resembles an initial segment of the iteration P.  Then we use an initial segment of 

the filter G~+ to obtain a Vx-generic filter G'.  It will turn out that  x E V[Hx*G']. 

3.3 Proof of 3.1: Assume x is a real in V[H~ * G~+]. Then in V[H~] there exists 

an ~ < I¢ + and a Pc-name ~ and a Pc-condition p such that  p II- "~ is a real", 

and £[G~+] = x. Assume, towards a contradiction, that  p forces that  there exists 

no such forcing Q as promised in 3.1. 

We work in V[H,,]. Let N < H(X) for some large X be a countable model 

containing p, ~ ,  and the sequence d definining (P~, Q~ : a < ~). (Since we con- 

sider an iteration of Souslin proper forcing, we may assume that  for all a ,  It-~"d~ 

codes a Souslin proper forcing.") 



Vol, 78, 1992 SOUSLIN FORCING 357 

Let N be the Mostowski collapse of N,  and let ~' be the image of d u n d e r  

this map. For any z • N, let ~ be the image of z under the collapsing map, 

= {~ : y • z Iq N}. Let S = N N e, so for every a • S, ~ = a s (see 2.3). 

is a transitive countable set, so it is in some V~, A < to. In V~, define a 

sequence g of length es  by requiring for all a • S: 

It- "If G r(a s, N') is generic for Pg~s,  then eas = c,~s [G [(a s, N)]" 
P~la$ 

(and e,~s = $ otherwise) (here G stands for Gp, where P = Perks). 

So we have three models: N C Vx C V~, and three definitions of iterations: 

dcodes  an iteration of length e in V~ (or in N),  g codes an iteration of length e s 

in Vx, and ~" codes an iteration of length e s in N. 

We will use Lemma 2.16 twice: in Vx for ~'and g, and in V,~ for ffand 

First we use the lemma in V~ to obtain a (if, 0, N,  e s,  ~, ~-generic condition 

q, • pffx. Then we use the lemma in V~ to obtain a (q', 0, V~, S, if, d)-generic 

condition q • Pd -v" . Now we let G~ C Pal" be generic over V~, containing q. We let 

for a <_ ~, a • S 

G" = G,~[(S, Vx,¢raS, d[a) computed in V,[G~], 

O~ = Okt(aS,  fC, c-'tas,¢raS ) computed in VA[G'], 

G~,= { ~ : p • G ~ N N } .  

(Strictly speaking, G~ is only well-defined if G~ is generic for vx P;wos .) 
We claim that for all a • (c + 1) O S, (1)-(11) hold. 

(x) G" is generic for PCl,~S over Vx and contains q' ta s. (Thus G'~ is well 

defined.) 

(2) G" is generic for P¢l,,s over ]V and contains ~ ta  s. 

(3) If,~ = a + 1, then ~ = ~ • ( d O )  n ~[~] ) .  
(4) a ~  = a ' .  

(5) Ga N N is generic for p N  d I~ over N. 

(6) For all ed-[ -names y of reals that are in N, y[G¢,] = ~[G,] .  

(7) c . s [a~ ]  = d~[a . ] .  

(s) v.[a~] ~"do[a~]  codes a Souslin proper forcing". 

(9) Vx[G~] ~"ec, s [G~] codes a Souslin proper forcing". 

(10) cc, s[G"] = e,~s [G~]. 

(11) v~,[a'l ~ ' % ~  [a~] codes a Souslin proper forcing." 
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The verification of this claim is a routine computation, (mainly a conse- 

quence of 2.10 and 2.16), but we will carry it out anyway. The proof is by 

induction on a. 

Proof of (1): Let p = min{fl < a : G~ not generic} U {a + 1}. By induction 

assumption (1),/~ = a or/~ = a + 1. 

If/~ = a,  then (since G~, contains a (q', 0, V~, S, ~.[as, d[a)-generic con- 

dition), by 2.10(A) we must have that a is a successor, and by 2.10(B) either 

d,._,[G,~_,] # e,~s_,lG2s_, ] or V.IG,. ] k " d ~ - , l G ~ - , ]  does not code a Souslin 

proper forcing". Both possibilities contradict some inductive assumption ((7) or 

(8)). 

Hence p = t~ + 1, and G'~ is generic. By 2.10(C), G" contains q' r~ s. 

Proof of (2): Almost verbatim the same as of (1), replacing G' by G", Vx by 

N, etc. Instead of the inductive assumptions (7) and (8) we have to use (10) and 

(11). 

Proof of(3): Every element of G#+I is of the form F for some r E N. We have 

( , )  F E a~+l  ¢)' r e a#+l  ¢~ rrfl E G# &: r(fl)[a#] E a(fl).  

By (6), r(fl)la~] = r(~)[G~]. Since the map z -* • is an isomorphism, 

, ( f l )  = r('~) = r ( f l s )  a n d  ,-r~ = vr~ s. 

Therefore the chain of equivalences in (*) can be continued by 

. . .  ¢ ,  ~rZ s e Va s ~ e ( a s ) [ ~ ]  e G(Z) ¢, r ~ Va • (G(Z) n g [ G a ] ) .  

Proof of  (4): Note that both G~ and G~ are subsets of N. First assume that tr 

is a limit. 

Then for r E N: 

~ e  G~, ,~ r e a ~  ~ V # e  S n a  rift  e an .  

(The last ~ holds because S N a = N N a is cofinal in the support of r.) 

... ¢,v,a ~ sno~ rha =~r f l  s ~Ga = a~ ~ r ~  a~. 

(The last equivalence holds by 2.6 and induction hypotheses (1), (8) and (11).) 
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hence 

For a = fl + 1, by Definition 2.6 we have 

a"(~ ~) = a'(~ ~) n g[a~] ,  

a' (~ ~) = G(~) n v~[a'~], 

a3+, = a j  • (G(Z) n N[G3]) = ~ z  • (G(Z) n N[Gz]) 

by induction hypothesis, so by (3) the proof is finished. 

Proof of (5): Let D 6 N be a dense set ill P~a '  then D is dense in P~as. By 

(2) and (4), there exists a condition g E / 9  n D o G,,. Hence r E N N D O Ga. 

Proof  of (6): Assume y[G~](n) = i. Then (by (5)), there exists a condition 

r 6 G~ O N such that 

V, o r N ~ r l e  y(;+)=~. 

So 

(Note that fi = n.) Since ~ E G~, ~[G,,](n) = i. 

(7) is just  a special case of (6). 

(8) is true by definition of the sequence ~ (No inductive proof needed for 

this fact.) 

(9) follows from (7), (8) and 1.7. 

(10) follows from (9), by the definition of ~'. 

(11) follows from (9) and (10). 

This completes the proof of (1)-(11). 

~-[~"1 can be To finish the proof of 3.1, note that (5) implies that x[G~] = ,,.~_~+ 

computed in V~[G'~], and since ~ E G~, p ___* q. | 

Note that we did not prove that ~' and ~' are corresponding sequences. 

Although (9) and (10) do not explicitly mention ~', Ga and ~ the proof uses the 

fact that G~ was obtained as the restriction of a filter Ga on Pd[a" 

4. Conclusion: Projective Measurability and the Bowel Conjecture 

4.1 Notation: Using the notation from 3.1, let Q~+ be the collapse of ~+ ('-R2) 

to ~ (=R1) in V,+ := V[H~ * G~+] (so the conditions are countable V*+ partial 

functions from ~ to x+). 

Let G(a +) _ O~+ be generic over V,+, V,++t := V~+[G(a+)]. 
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4.2 Fact: ~t n y~÷ = ~ n y~++,. 

Proof." Q~+ is a-closed. | 

4.3 LEMMA: Let x be a reM in V,~+, and let H~ C R~o be generic, A0 < to, 

H~ e V,+. 

Then there exists a generic H" C_ R~ in V~+ such that z 6 V[H'] and 

H~ C_ H~. (Clearly then, for some A1 < to, letting H~ = H' [R~,, we have 

x 6 V[H~].) 

Proof." Since H~ is countable, we can use 3.1 to get a generic G~ c R~ such that 

x and g~ are in V[G~]. V[G~] is a forcing extension of V[H~] via Coll0¢)v[H~] 

Coll(~¢)V°/H~. So V[G'] = V[H~ * H"] for some H".  Let H~ := H~ * H" .  II 

4.4 Fact: H~ C__ R~ is generic (over V) iff for all A < ~, H~ N R~ is generic. 

Proof: Any maximal antichain of R~ has size < to, so it is contained in some RA 

and hence meets H~. | 

4 . 5  THEOREM: Assume H~, G~+, G(I¢ +) are as in 4.1. Then 

(,) 3H'~ e v~++,, H" c R~ (H" Vo-generic), ~ n V[H'] = la n V[G~+]. 

Proof." V~++I and V~+ have the same reals. In V~++I, enumerate all the reals 

(r~: ~ < t;) and find (using 4.3) an increasing sequence of ordinals ($¢: ~ < to) 

and an increasing sequence (He:  ~ < to), where all He are in V~+, He C_ R>,¢ 

generic, v~ E V[H~]. 

Then H~ = UH¢ c_ R~ is generic, and V0[H~] contains all the reals of 

V[G~+]. Conversely, every real in V[H l is in some V[H~] and hence in V[G~+]. 

4.6 COROLLARY: For any dosed first order statement ~ about the rea/s (without 

parameters), 

v ~  ~, v ~ + ~ .  

Proof." Assume V~ = V[H~] ~ ~. Then, (by [15]) 0 I~-,,~ ~ (where 0 is the 
weakest condition in R~). This implies V[H'] ~ ~, and therefore V[G~+] ~ T. 

4.7 Remark: As the statement "All E~-sets are measurable" is itself a first order 

statement, the above argument proves projective measurability in V,+. 
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4.8 APPLICATION 1: / f  Con(ZFC+IC),  then Con(ZFC+PM+BC) .  

Proof: Assume that ~; is inaccessible. We start from V = L, collapse ~;, and 

iterate ~+ many Mathias (or Laver) reals. By [1] or [10], V,+ satisfies BC, and 

by 4.7, V~+ satisfies PM. II 

4.9 COROLLARY: 

(I) Con(ZFC+PM+BC) IffCon(ZFC+PM+-~BC) iffCon(ZFC+IC). 
(2) Con(ZFC+- .PM+BC)  i f fCon(ZFC+- .PM+- .BC)  iff Con(ZFC). 

Proof of the Corollary: (1) Note that Solovay's model satisfies CH if the ground 

model is L, and CH implies --BC. 

Hence Con(ZFC+IC) implies Con(ZFC+PM+'-BC) .  

The only other implication that does not follow from Solovay's and Shelah's 

theorems ([15] and [14]) is the one from 4.8. 

(2) L will always satisfy -~PM + --BC. Starting with a model of "V = L 

and there is no inaccessible cardinal", Layer's construction will yield a generic 

extension satisfying BC+--PM (by [14]). II 

4.10 APPLICATION 2: If  

Con(ZFC+IC),  then Con(ZFC+PM+MA(Sousl in proper)+c = R2). 

Proof: Similar to application 1, using 1.18. II 
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